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A reanalysis of the resistance R of two-and three-dimensional superconducting 
networks at the percolation threshold Pc, together with the previous results for 
the elastic moduli K of such networks, shows that there is a unified description 
of finite-size scaling for scalar and vector transport properties of percolation 
systems. For a network of linear size L at Pc, and for both scalar and vector 
percolation in both two and three dimensions, K and R scale with L as 
L X[a 1 +a2(lnL) -~ +a3 L 1], where x is the ratio of the associated critical 
exponent of K or R and the correlation length exponent v of percolation. 
Although our estimates of x for the resistance of percolation networks are 
consistent with the previous results, they do indicate that in both two and three 
dimensions and for both scalar and vector percolation, the leading nonanalytic 
correction-to-scaling exponent is zero. From a reanalysis of data on diffusion on 
percolation clusters at Pc, we propose that such correction-to-scaling terms are 
a general property of dynamics of percolation clusters. We also suggest that for 
two-dimensional percolation the conductivity exponent t and the super- 
conductivity exponent s are given by s = t = v - ~ / 4 =  187/144= 1.2986.., and 
the elasticity exponent f is given by f = t + 2v = 571/144 = 3.9652..., where fl is 
the exponent of the strength of the infinite percolation cluster. 
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tivity; elasticity. 

ne twor l~s  h a v e  b e e n  a n  F o r  t he  p a s t  t w o  d e c a d e s  r a n d o m  p e r c o l a t i o n  - (1) 

i m p o r t a n t  t o o l  for  i n v e s t i g a t i o n  of  t r a n s p o r t  p r o c e s s e s  in  d i s o r d e r e d  

sys t ems ,  s u c h  as  p o r o u s  m e d i a ,  p o l y m e r  gels, a n d  c o m p o s i t e  sol ids .  A lo t  
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of the attention has been focused on the properties of such networks near 
the percolation threshold Pc of the network. Consider a percolation 
network in which a fraction p of the bonds are ordinary conductors (with 
finite conductance or resistance) and the rest are insulators. As p 
approaches Pc from above, the bulk dc conductivity G of the network 
vanishes according to the power law G,-~ d, whereas the conductivity of a 
network in which a fraction p of the bonds are superconductors (with zero 
resistance) and the rest are ordinary conductors diverges as Pc is 
approached from below according to the scaling law G ~ e  -s, where 

= I P -  Pc[. Similarly, in a network of linear elastic elements (e.g., linear 
springs) which can be stretched and/or bent, and in which a fraction p of 
the springs have a finite elastic constant e and the rest have a zero elastic 
constant, the elastic moduli K of the network vanish as p approaches Pc as 
K ~  er whereas if e = oo for a fraction p of the springs (i.e., the springs are 
totally rigid) and e is finite for the rest of the springs, one has K ~  ~-~. 
Moreover, near Pc the correlation length ~ diverges as ~--~e-v, and the 
strength P ( p )  of the network, i.e., the fraction of bounds or sites in the 
sample-spanning (infinite) cluster, vanishes as P(p) , ,~  ~ .  In two dimensions 
(2d) a duality argument establishes rigorously (2"3~ that s =  t. It has also 
been suggested (4'5~ that f =  t + 2v and (6~ "c = v -  ill2. It is currently an open 
question whether t and s are related to v, fl, and other percolation 
exponents that characterize geometrical properties of percolation clusters. 
These exponents have been estimated by a variety of methods. In Table I 
we present the currently accepted values of these exponents. 

Among various methods that have been used to estimate these 
exponents, the transfer matrix algorithm, (7-9~ when combined with finite- 
size scaling analysis (j~ (FSSA), seems to be the most accurate method of 
estimating t, s, f ,  and r. One constructs very long bars of random resistors 
or springs (u~ and calculates its resistance (conductance) or elastic moduli 
during the construction. The associated critical exponent is then obtained 
through FSSA by extrapolating from bars of different lengths or cross sec- 
tions. According to FSSA, for a network of size L x L x L (or L x L in 2d) 

Table I. Current ly Accepted Values of the Cri t ical  Exponents in d 
Dimensions 

d v ~ t/v s/v f/v ~/v 

1 1 0 0 1 0 1 
2 4/3 5/36 0.9745 • 0.0015 0.9745 • 0.0015 2.97 _ 0.03 0.92 • 0.03 
3 0.88 0.41 2.27 • 0.20 0.835 • 0.005 4.30 -- 0.10 0.74 • 0.04 
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or a bar of size L x L x n (or L x n in 2d), where n is very large (or order 
of 107-109), at Pc one has 

K ~  L-X[a l  + a2hl(L) + a3h3(L)] (1) 

where x = fly, and the resistance R scales as 

R ..~ LY[bl q- b2 gl(L) q- b3 g2(L)] (2) 

where y = t/v or - s l y .  Here the functions gl,  g2, hi, and h2 represent the 
leading correction-to-scaling (CTS) terms which are particularly important 
for small to moderate values of L, and a's and b's are numerical constants. 
Using this technique and the special-purpose computer .PERCOLA, (12) 
Normand e t a / .  03) and Normand and Herrmann ~ (NHH) studied 
resistances of bond and site percolation networks, and obtained very 
precise estimates of s in both 2d and 3d (see Table I). 

The goals of this paper are as follows. (1) We reanalyse the data of 
N H H  to see whether it is possible to obtain more precise estimates of s. (2) 
We show that for both R and K, gl = h i  = (In L) ~ and g2 = h2 = L I yield 
the most precise values of the exponents, by which we mean an estimate 
with the smallest estimated errors, and also the smallest sum of the squared 
deviations (SSD) between the predictions of K or G and the actual transfer 
matrix data. In addition, we show that this choice of gl and g2 provides 
consistent estimates of s for both site and bond percolation data (as 
required by universality), i.e., using the proposed gl and g2 yields estimates 
of s for site and bond percolation that, within their error bars, are consis- 
tant with one another, whereas in order to be consistent with the principle 
of universality, N H H  had to impose certain choice to obtain compromise 
estimates of s. The proposed g~ and g2 imply that the leading nonanalytic 
CTS exponent is zero, while that of analytic CTS is one in both 2d and 3d. 
As such, these exponents appear to be superuniversal, i.e., independent of 
dimension. (3) Based on these results, we suggest scaling relations for t and 
s for low-dimensional systems, and provide some theoretical arguments in 
their support. 

In the analysis of their data, N H H  assumed that 

R ~ L Y(cl + czL-~~ (3) 

where y = s/v. Here co is the first universal CTS exponent. They suggested, 
based on the analysis of their data, that co-~ 1.2 and 1.8 in 2d and 3d, 
respectively. However, if one uses (3) for the bond and site percolation data 
separately, one obtains estimates of y and co that are not consistent with 
one another (within their estimated errors) and therefore the proposed values 
of co [imposed on Eq. (3)] represent compromise values in order to obtain 
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universal estimates of y for both bond and site percolation data. On the 
other hand, we have already shown that (15/in estimating f for 3d systems 
and (6~ v for both 2d and 3d networks the functions 

hl(L ) = (In L) 1 (4) 

h 2 ( L )  = L ~ (5) 

provide the most accurate fits to the data. In our analyses, we have also 
used an equation similar to (3) and found that the quality of the resulting 
fits was worse than those provided by Eqs. (2), (4), and (5). Zabolitzky 
et al. ~1~ had already reached the same conclusion for estimating f for 2d 
systems. We now show that the same is also true of the data of N H H  for 
R for both 2d and 3d networks. 

Figure 1 presents the fits of the 2d data, for both bond and site 
percolation, using Eq. (2) together with (4) and (5). It is clear that the first 
are excellent and we obtain 

sly = 0.9748 + 0.0010 (6) 

This is slightly larger than that proposed by N H H  (see Table I), while the 
estimated error is somewhat smaller. Our estimated errors are mainly due 
to the fluctuations in the data themselves, and the error due to fitting is 
negligible. To estimate these errors, we let each data point take on its 
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Fig. 1. P lo t  of In R versus In L for 2d site (*) and  bond  ( �9 ) percolat ion.  
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largest or smallest allowed value (according to its individual error as 
reported by N H H )  and estimate the value of the exponent. The deviations 
between such estimates and the central value of the exponent given above 
yield the estimated errors. This method, we believe, provides a conservative 
estimate of the errors. A few points are worth mentioning here. First, as 
was also done by NHH,  we analyzed the 2d data for L ~> 7, since the data 
for smaller values of L, especially those for bond percolation, showed 
significant small size dependence. However, since we have used two correc- 
tion terms, the result using the data for all L's would be only slightly larger 
then Eq. (6) (we would obtain sly = 0.9753), whereas using Eq. (3) does not 
provide such consistency in the results. Second, the SSD between the 
predictions, using Eq. (6), and the data is more than one order of 
magnitude smaller than that provided by Eq. (3). For example, for 2d site 
percolation, the SSD with Eqs. (2), (4), and (5) is about 10 5, whereas it 
is only about 10 -2 if one uses Eq. (3). Third, one can more generally use 
equations such as hi = (ln L) -~1 and h 2 = L -~ where co~ and co2 are two 
universal exponents. We have used such equations and have found that the 
quality of the resulting fits is always worse than that provided by Eqs. (4) 
and (5). 

The difference between our 3d estimate of sly and that proposed 
by Normand and Herrmann (Table I) is somewhat larger than the 
corresponding value in 2d, though still within the combined error bars. 
Figure 2 presents the fits using Eqs. (2), (4), and (5), and it is clear that the 
fits are again excellent. We estimate that 

s/v = 0.827 _ 0.006 (7) 

As in the case of 2d systems, Eqs. (2), (4), and (5) provide consistent fits 
of bond and site percolation data, whereas (3) would not and one has to 
use compromise values of y and co. This fit with (3) is, however, done at 
the expense of increasing the SSD between the predictions and the data by 
at least one or two orders of magnitude. 

Although the difference between our estimates for the leading 
exponent y and those proposed by N H H  is not very large, and all 
estimates are consistent with one another to within their estimated errors, 
our analysis provides a unified and simpler description of FSSA of scalar 
and vector percolation in both 2d and 3d. One no longer needs to estimate 
co, and the CTS exponents are a priori known. Moreover, our estimates of 
s are obtained with much smaller SSD between the predictions and the 
data and therefore from a statistical point of view are perhaps more 
reliable. Thus, in a sense they confirm NHH's  estimates for the leading 
exponents. This, we believe, represents the main contribution of our 
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Fig. 2. Same as in Fig. 1, but  for 3d percolat ion.  
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analysis. We do not, however, have a theoretical explanation for Eqs. (4) 
and (5). 

To test whether such CTS terms are suitable for describing any other 
dynamic property of percolation clusters, we also reanalyzed the diffusion 
data of Roman. (16) Diffusion on percolation clusters at Pc is anomalous, 
and the root-mean-squared displacement r of a diffusing particle in such a 
system increases with time 0 as r ~  O k. Roman (~6) has recently obtained 
accurate data for r as a function of 0 for a simple-cubic network at Pc. We 
found that r ,.~ Ok[d1 -1-d2(ln 0) 1 + d3 0 1] provides a very precise estimate 
of k, and obtained k-~0.195+0.001,  which should be compared with 
0.190_+ 0.003 that was suggested by Roman, (16) with our SSD being of the 
order of 10 -5. Our estimate of k is closer to series expansion estimate, (17) 
k ~- 0.198 _+ 0.003, than Roman's,  and is also close to the most recent 
Monte Carlo estimate, (18) k ~- 0.200. On the other hand, if we reanalyze the 
more recent data of Paetzold, (19) who studied diffusion of interacting 
particles on 3d percolation clusters at Pc, we obtain k ~ 0.200+0.005, 
which is again compatible with the series estimate, (~7) Monte Carlo 
estimate, (~8) and ours, but is barely consistent with Paetzold's, 
k-~ 0.183 _+0.010. Based on these analyses, we suggest that our CTS terms 
are perhaps general characteristics of dynamic properties of percolation 
clusters. 

Because of the high accuracy of the estimated values of t and s for 
2d systems, we would like to speculate on the relation between them and 
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the geometrical exponents of percolation. For 2d systems, Alexander 
and Orbach (2~ and Kert6sz (m conjectured that s = t = v - ~ / 2 = 9 1 / 7 2 =  
1.2639 .... which underestimates t and s, while Levinshtein et al., ~2~ 
Starley, (23~ and Aharony and Stauffer (24) proposed that s =  t = v = 4 / 3  = 
1.333 .... which overestimates these exponents. Taking a simple arithmetic 
average of the conjectured values yield s ( d =  2) = t (d=  2) = v- /~ /4  = 
187/144= 1.2986 (or sly = t/v = 187/192 =0.9739...), which is completely 
consistent with the data. Noting also that s ( d =  1)=  1, we suggest that 

s = v - fl/4 (8) 

for d~< d~, where d~ is some kind of lower critical dimensionality, the 
significance of which is discussed below. Since t(d = 1) = 0, we also suggest 
that 

t =  ( d -  1)v - /~/4 (9) 

for d<~d z. For d>~d t the relations between s and t and the geometrical 
exponents of percolation will be discussed in a future paper. Equation (9), 
together with f =  t + 2v, would then predict that f ( d =  2) = 571/144 = 
3.9652 .... We note that our conjecture for s and t for d =  2 is consistent with 
a hypothesis of Pearson (25) that if the critical exponents of any 2d system 
are rational number, then the denominator of the exponents has to be of 
form 2nix 3n2• 5 n3, where nl, F/z, and n 3 are small integers or zero (in our 
case, nl = 4, n~ = 2, and n 3 = 0) .  We also note that Eq. (9) is in agreement 
with the (1 +8)  expansion of t, (26) where e = d - 1 ,  if one uses the (1+8)  
expansions of v and fi due to Stephen. ~27~ 

What is the significance of d~? As one of us stated several years ago, (2s) 
there is good reason to believe that there is a lower critical dimensionality 
dl such that the relations between s and t and the geometrical exponents of 
percolation, if they do exist, would be different for d above or below dl. 
Fucito and Parisi (29~ and Harris and Lubensky (3~ have shown that the 
e-expansions for percolation critical exponents (here, e = 6 -  d) calculated 
from a ~o 3 theory may break down at some anomalous dimensionality dr, 
which they estimated to be close to three. They have argued that at d =  dt 
the fourth-order potential in the field-theoretic formulation of the problem 
becomes relevant. If this is true, one may have a scaling relation between, 
e.g., t and the geometrical exponents of percolation which may yield an 
e-expansion for t which is consistent with that derived directly, ~31} and yet 
this scaling relation could be wrong at d = 2, if dt does actually exist and 
is larger than two. Therefore, we suggest that Eqs. (8) and (9) are exact for 
any d below dz. The relations between s and t and geometrical exponents 
of percolation for d above d~ will be discussed in a future paper. (32) 
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Finally, we would like to suggest that one should perhaps reanalyze 
the existing series expansions for the conductivity exponent t and include 
CTS terms similar to what we suggest here. Currently, the series expansions 
yield (17'33) t=1.26,  in agreement with the Alexander-Orbaeh-Kert6sz 
conjecture for 2d percolation. Thus, it may be possible that by including 
the CTS terms that we are proposing here, one can resolve the discrepancy 
between the series estimate and the simulation data. 
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